Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Temperature-dependent electron mobility in InAs nanowires

Identifieur interne : 000373 ( Main/Repository ); précédent : 000372; suivant : 000374

Temperature-dependent electron mobility in InAs nanowires

Auteurs : RBID : Pascal:13-0219141

Descripteurs français

English descriptors

Abstract

Effective electron mobilities are obtained by transport measurements on InAs nanowire field-effect transistors at temperatures ranging from 10 to 200 K. The mobility increases with temperatures below ∼30-50 K, and then decreases with temperatures above 50 K, consistent with other reports. The magnitude and temperature dependence of the observed mobility can be explained by Coulomb scattering from ionized surface states at typical densities. The behaviour above 50 K is ascribed to the thermally activated increase in the number of scatterers, although nanoscale confinement also plays a role as higher radial subbands are populated, leading to interband scattering and a shift of the carrier distribution closer to the surface. Scattering rate calculations using finite-element simulations of the nanowire transistor confirm that these mechanisms are able to explain the data.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0219141

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Temperature-dependent electron mobility in InAs nanowires</title>
<author>
<name sortKey="Gupta, Nupur" uniqKey="Gupta N">Nupur Gupta</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, University of Waterloo, 200 University Avenue W.</s1>
<s2>Waterloo, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Waterloo, ON</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute for Quantum Computing, University of Waterloo, 200 University Avenue W.</s1>
<s2>Waterloo, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Waterloo, ON</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue W.</s1>
<s2>Waterloo, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Waterloo, ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YIPU SONG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute for Quantum Computing, University of Waterloo, 200 University Avenue W.</s1>
<s2>Waterloo, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Waterloo, ON</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue W.</s1>
<s2>Waterloo, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Waterloo, ON</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Chemistry, University of Waterloo, 200 University Avenue W.</s1>
<s2>Waterloo, ON</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Waterloo, ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Holloway, Gregory W" uniqKey="Holloway G">Gregory W. Holloway</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, University of Waterloo, 200 University Avenue W.</s1>
<s2>Waterloo, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Waterloo, ON</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute for Quantum Computing, University of Waterloo, 200 University Avenue W.</s1>
<s2>Waterloo, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Waterloo, ON</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue W.</s1>
<s2>Waterloo, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Waterloo, ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sinha, Urbasi" uniqKey="Sinha U">Urbasi Sinha</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Raman Research Institute, Sadashivanagar</s1>
<s2>Bangalore</s2>
<s3>IND</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Bangalore</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Haapamaki, Chris M" uniqKey="Haapamaki C">Chris M. Haapamaki</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Department of Engineering Physics, McMaster University, 1280 Main Street W.</s1>
<s2>Hamilton, ON</s2>
<s3>CAN</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Hamilton, ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lapierre, Ray R" uniqKey="Lapierre R">Ray R. Lapierre</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Department of Engineering Physics, McMaster University, 1280 Main Street W.</s1>
<s2>Hamilton, ON</s2>
<s3>CAN</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Hamilton, ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Baugh, Jonathan" uniqKey="Baugh J">Jonathan Baugh</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, University of Waterloo, 200 University Avenue W.</s1>
<s2>Waterloo, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Waterloo, ON</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute for Quantum Computing, University of Waterloo, 200 University Avenue W.</s1>
<s2>Waterloo, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Waterloo, ON</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue W.</s1>
<s2>Waterloo, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Waterloo, ON</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Chemistry, University of Waterloo, 200 University Avenue W.</s1>
<s2>Waterloo, ON</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Waterloo, ON</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0219141</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0219141 INIST</idno>
<idno type="RBID">Pascal:13-0219141</idno>
<idno type="wicri:Area/Main/Corpus">000B67</idno>
<idno type="wicri:Area/Main/Repository">000373</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0957-4484</idno>
<title level="j" type="abbreviated">Nanotechnology : (Bristol, Print)</title>
<title level="j" type="main">Nanotechnology : (Bristol. Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Confinement</term>
<term>Digital simulation</term>
<term>Electron mobility</term>
<term>Electron temperature</term>
<term>Finite element method</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Nanoelectronics</term>
<term>Nanometer scale</term>
<term>Nanostructured materials</term>
<term>Nanostructures</term>
<term>Nanowires</term>
<term>Subband</term>
<term>Surface states</term>
<term>Temperature dependence</term>
<term>Temperature effects</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dépendance température</term>
<term>Température électron</term>
<term>Mobilité électron</term>
<term>Arséniure d'indium</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Nanoélectronique</term>
<term>Effet température</term>
<term>Etat surface</term>
<term>Nanostructure</term>
<term>Echelle nanométrique</term>
<term>Confinement</term>
<term>Sous bande</term>
<term>Méthode élément fini</term>
<term>Simulation numérique</term>
<term>InAs</term>
<term>8107V</term>
<term>8107B</term>
<term>8535</term>
<term>6865</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Effective electron mobilities are obtained by transport measurements on InAs nanowire field-effect transistors at temperatures ranging from 10 to 200 K. The mobility increases with temperatures below ∼30-50 K, and then decreases with temperatures above 50 K, consistent with other reports. The magnitude and temperature dependence of the observed mobility can be explained by Coulomb scattering from ionized surface states at typical densities. The behaviour above 50 K is ascribed to the thermally activated increase in the number of scatterers, although nanoscale confinement also plays a role as higher radial subbands are populated, leading to interband scattering and a shift of the carrier distribution closer to the surface. Scattering rate calculations using finite-element simulations of the nanowire transistor confirm that these mechanisms are able to explain the data.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4484</s0>
</fA01>
<fA03 i2="1">
<s0>Nanotechnology : (Bristol, Print)</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>22</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Temperature-dependent electron mobility in InAs nanowires</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GUPTA (Nupur)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>YIPU SONG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HOLLOWAY (Gregory W.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SINHA (Urbasi)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HAAPAMAKI (Chris M.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LAPIERRE (Ray R.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BAUGH (Jonathan)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics and Astronomy, University of Waterloo, 200 University Avenue W.</s1>
<s2>Waterloo, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute for Quantum Computing, University of Waterloo, 200 University Avenue W.</s1>
<s2>Waterloo, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue W.</s1>
<s2>Waterloo, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Chemistry, University of Waterloo, 200 University Avenue W.</s1>
<s2>Waterloo, ON</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Raman Research Institute, Sadashivanagar</s1>
<s2>Bangalore</s2>
<s3>IND</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Department of Engineering Physics, McMaster University, 1280 Main Street W.</s1>
<s2>Hamilton, ON</s2>
<s3>CAN</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s2>225202.1-225202.11</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22480</s2>
<s5>354000503035780030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>49 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0219141</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nanotechnology : (Bristol. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Effective electron mobilities are obtained by transport measurements on InAs nanowire field-effect transistors at temperatures ranging from 10 to 200 K. The mobility increases with temperatures below ∼30-50 K, and then decreases with temperatures above 50 K, consistent with other reports. The magnitude and temperature dependence of the observed mobility can be explained by Coulomb scattering from ionized surface states at typical densities. The behaviour above 50 K is ascribed to the thermally activated increase in the number of scatterers, although nanoscale confinement also plays a role as higher radial subbands are populated, leading to interband scattering and a shift of the carrier distribution closer to the surface. Scattering rate calculations using finite-element simulations of the nanowire transistor confirm that these mechanisms are able to explain the data.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60H65</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Température électron</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Electron temperature</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Mobilité électron</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Electron mobility</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Nanoélectronique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Nanoelectronics</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Effet température</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Temperature effects</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Etat surface</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Surface states</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Echelle nanométrique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Nanometer scale</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Confinement</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Confinement</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Sous bande</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Subband</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Subbanda</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Méthode élément fini</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Finite element method</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Simulation numérique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Digital simulation</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8535</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>6865</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>203</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000373 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000373 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0219141
   |texte=   Temperature-dependent electron mobility in InAs nanowires
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024